Koliokviumas Balandžio 11 d. 17:30

Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to choose between two alternatives, heads or tails, sometimes used to resolve a dispute between two parties.
It is a form of sortition which inherently has two possible outcomes.
The party who calls the side that the coin lands on wins.

Card game - Poker

A: $\operatorname{Pr} K_{A}=x, \operatorname{Pu}_{A}=a$;
$B: P_{r} K_{B}=y, P V_{B}=b ;$
$\varepsilon: \operatorname{Pr} K_{c}=z, \operatorname{Pr} K_{c}=e ;$
$a, e ; b=g^{y} \bmod p$;
$a, b ; e=\ldots$
b, e; $a=g^{x} \bmod p$
encryption
$\mathrm{PP}=(p, g) \quad \gg \mathrm{p}=268435$ 019; \% 2^28-1 --\gg> int 64(2^28-1)

$$
\% \text { ans = } 268435455
$$

>> g=2;
$m \in \mathcal{L}_{p}^{*}=\{1,2,3, \ldots, p-1\} ; * \bmod p$
message to be encrypted

$$
\begin{aligned}
& (i)-\operatorname{randi} ; i \in \mathcal{Z}_{p-1}=\{0,1,2, \ldots, p-2\} \\
& c=\operatorname{Erc}(a, \dot{i}, m)= \\
& \left.=(E, D)=\frac{\left(m a^{i} \bmod p\right.}{E}, \frac{g^{i} \bmod p}{D}\right)
\end{aligned}
$$

$$
\operatorname{Dec}(x, c)=E \cdot D^{-x} \bmod p=\frac{E}{D^{x},} \bmod p=
$$

Bob

$$
\begin{aligned}
& \operatorname{Dec}(x, c)=E \cdot D^{-x} \bmod p=\frac{E}{D^{x}} \bmod p=\quad \text { Alice! } \\
& =\frac{m a^{i} \bmod p}{\left(g^{i}\right)^{x}}=\frac{m\left(g^{x}\right)^{\dot{x}} \bmod p}{q^{i x}}=m \bmod p=m \quad \text { if } m<p
\end{aligned}
$$

$\mathrm{D}^{-\boldsymbol{x}} \bmod \boldsymbol{p}$ computation using Fermat theorem:
If p is prime, then for any integer a holds $\boldsymbol{a}^{p-1}=\mathbf{1} \bmod p$.

$$
D^{-x}=D^{p-1-x} \bmod p
$$

$D^{-x} \bmod p$ computation
a) D^{-1} computation: $\gg D_{-m 1}=m u \ln v(D, P)$
b) D^{-x} computation: $\left(D^{-1}\right)^{x}=D^{-x} \gg D_{-} m x=\bmod \exp (D, m 1, x, p)$

$$
\begin{aligned}
& A: \operatorname{Pr} K_{A}=x ; \operatorname{Pu} K_{A}=a ; \operatorname{Pu} K_{B}=b ; \\
& m_{i} \in\{1,2\}
\end{aligned}
$$

Coin flipping scheme: Alice before coin flipping assigns possible results to variables $\mathrm{m}_{1}=1$ and $\mathrm{m}_{2}=2$.

1. Alice after coin lip assigns result m either to $m=1$ or $m=2$.
2. Alice encrypts $\mathrm{m}_{1}=1$ and $\mathrm{m}_{2}=2$ by her Pul $=a$ using random generated numbers $i 1$ and $i 2$ computing ciphertexts $c_{1 A}$ and $c_{2 A}$ respectively:

$$
\begin{aligned}
& m_{i} \in\{1,2\} \\
& i_{1}, i_{2} \leftarrow \operatorname{randi}\left(\mathcal{L}_{p-1}\right) \\
& \left.c_{1 A}=\operatorname{Enc}\left(a, i_{1}, m_{1}\right)=\left(E_{1 A}, D_{1 A}\right)\right\} \\
& \left.c_{2 A}=\operatorname{Enc}\left(a, i_{2}, m_{2}\right)=\left(E_{2 A}, D_{2 A}\right)\right\} \\
& E_{1 A}=m_{1} \cdot a_{i i_{1}}^{i_{1}} \bmod p ; D_{1 A}=g_{i_{2}}^{i_{1}} \bmod p \\
& E_{2 A}=m_{2} \cdot a^{i_{2}} \bmod p ; D_{2 A}=g^{i_{2}} \bmod p \\
& \xrightarrow{C_{1} A, C_{2} A} B \\
& \text { A: } \\
& C_{2 A} \leftarrow \operatorname{rand}\left\{C_{1 A}, C_{2 A}\right\} ; C_{i_{A}}=C_{2 A} \\
& i_{3} \leftarrow \operatorname{randi}\left(\mathcal{L}_{p-1}\right) \\
& \operatorname{Enc}\left(b, i_{3}, E_{2 A}\right)=\left(E_{2 A B}, D_{2 A B}\right)=C_{2 A B} \\
& =\left(E_{2 A} \cdot b^{i_{3}} \bmod p, g^{i_{3}} \bmod p\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(\underbrace{E_{E_{2 A B}}}_{E_{2 A B} \cdot b^{i_{3}} \bmod p}, \underbrace{g^{i_{3}} \bmod p}_{D_{2 A B}}) \\
& \operatorname{Dec}\left(x, C_{2 A B}\right)=\frac{E_{2 A B}}{\left(D_{2 A}\right)^{x}}=E_{2 A B} \cdot\left(D_{2 A}\right)^{-x}= \\
& =\frac{E_{2 A} \cdot b^{i_{3}}}{\left(g^{i_{2}}\right)^{x}}=\frac{m_{2} \cdot a^{i_{2}} \cdot b^{i_{3}}}{g^{i_{2} x}}= \\
& =\frac{m_{2} \cdot a^{i_{2}} \cdot b^{i_{3}}}{g^{i_{2} x}}=\frac{m_{2} \cdot q^{x i_{2}} \cdot b^{i_{3}}}{g^{i_{2} *}}= \\
& =m_{2} \cdot b^{i_{3}}=E_{2 A B A} \quad E_{2 A B A} \Rightarrow B: C_{2 A B A}=\left(E_{2 A B A}, D_{2 A B}\right) \\
& \text { (1) Let } B \text { guessed that At } \\
& \text { tossed } C_{2 A} \\
& \operatorname{Dec}\left(y, C_{2 A B A}\right)=E_{2 A B A} \cdot\left(D_{2 A B}\right)^{-y}= \\
& =\frac{E_{2 A B A}}{\left(D_{2 A B}\right)^{y}}=\frac{m_{2} \cdot b^{i_{3}}}{\left(g^{i_{3}}\right)^{y}}=\frac{m_{2} \cdot\left(g^{y}\right)^{i_{3}}}{g^{i_{3} y}}= \\
& =\frac{m_{2} \cdot g^{y i_{3}}}{g^{i_{3} y}}=m_{2} \\
& m_{2}, i_{3} \\
& m=E_{2 A B A} \cdot(b)^{-i_{3}} \bmod p= \\
& m_{2} \cdot b^{i_{3}} \cdot b^{-i_{3}}=m_{2} \cdot b^{i_{3}-i_{3}}= \\
& =m_{2} \cdot b^{0}=m_{2} \cdot 1=m_{2} \\
& i_{2} \rightarrow B: C_{2 A}=\left(E_{2 A}, D_{2 A}\right) \\
& E_{2 A} \cdot a^{-i_{2}} \bmod p= \\
& =m_{2} \cdot a^{i_{2}} \cdot a^{-i_{2}} \bmod p=
\end{aligned}
$$

$$
=m_{2} \cdot a^{i_{2}-i_{2}}=m_{2} \cdot a^{0}=m_{2}
$$

(2) Let B choosed that A tossed $c_{1 A}=\left(m_{1} \cdot a^{i_{1}}, g^{i_{1}}\right)$ B did not guess the toss.

$$
\begin{aligned}
& i_{3} \leftarrow \operatorname{randi}\left(\mathscr{L}_{p-1}\right) \\
& E n c\left(b, i_{3}, E_{1 A}\right)=\left(E_{1 A B}, D_{1 A B}\right)=C_{1 A B} \\
& =(\underbrace{E_{1 A} \cdot b^{i_{3}} \bmod p}_{E_{1 A B}}, \underbrace{g^{i_{3}} \bmod p}_{D_{1 A B}})
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}\left(x, C_{2 A B}\right)=\frac{E_{1 A B}}{\left(D_{2 A}\right)^{x}}= \\
& =\frac{E_{1 A} \cdot b^{i_{3}}}{\left(g^{i_{2}}\right)^{x}}=\frac{m_{1} \cdot a^{i_{1}} \cdot b^{i_{3}}}{g^{i_{2} x}}= \\
& =\frac{m_{1} \cdot a^{i_{1}} \cdot b^{i_{3}}}{g^{i_{2} x}}=\frac{m_{1} \cdot q^{x i_{1}} \cdot b^{i_{3}}}{g^{i_{2} x}}= \\
& =E_{1 A B A} \\
& E_{1 A B A} \cdot(b)^{-i_{3}} \bmod p=m^{\prime \prime} \quad \leftarrow m^{\prime}, i_{3} \\
& i_{2} \longrightarrow B: \operatorname{Dec}\left(y, m^{\prime \prime}\right) \\
& E_{14} \cdot a^{-i_{2}} \text { moo } p=u \notin\{1,2\}
\end{aligned}
$$

If random generated number in ElGamal encryption is revealed then ciphortext combe decrypted:

$$
\operatorname{Enc}(a, i, m)=(E, D)=\left(\operatorname{moa^{i}} \bmod p, g^{i} \bmod p\right)=c
$$

Decruntion without knowledao Pr $=x$ Rit having i :

$$
\operatorname{Enc}(a, i, m)=(E, D)=\left(m \cdot a^{i} \bmod p, g^{i} \bmod p\right)=c
$$

Decryption without knowledge PrK P ㅇut having i :

$$
E \cdot a^{-1} \bmod p=m a^{i} a^{-5} \bmod p=m \bmod p=m
$$

Dice throwing
$\because: \vdots: \vdots:$ Poker
$\because \vdots: \because \because \because \because \because 3 \times 2$

$$
\begin{aligned}
& \bullet \because: \because \because:: \rightarrow \equiv 21 \\
& m \in\{1,2,3,4,5,6\} \\
& r_{1} \leftarrow \operatorname{rand} i, \ldots, r_{6} \leftarrow \operatorname{randi} \\
& c_{i}=\operatorname{Enc}\left(a, r_{i}, m_{i}\right), i=\overline{1,6} . \\
& c_{1} \equiv 1 ; c_{2} \equiv 2 ; c_{3} \equiv 3 ; \ldots c_{6} \equiv 6 . \quad B: c_{i} \leftarrow \operatorname{rand}\left\{c_{i}\right\} \\
& c_{i j}=E n c\left(a, r_{i j}, m_{i j}\right) \quad c_{i}=c_{6} \\
& i=\overline{1,6} \text { kanliuho reilsmés } \\
& \hat{j}=\overline{1,6} \text { kanliuks numeris }
\end{aligned}
$$

Card game - Poker
52 kortos \& 4 mostis
1 kortos sifrav.

$$
\begin{aligned}
& c_{i}=\operatorname{Enc}\left(a, r_{i}, m_{i}\right) ; i=\overline{1,4} \\
& c_{i j}=\operatorname{Enc}\left(a, r_{i j}, m_{i j}\right) ; j=\overline{1,52} .
\end{aligned}
$$

